本文通過對進口防雷器的核心技術和參數進行詳細介紹,并對選擇電源防雷器的幾個重要的參數進行對比分析,對技術人員以后在電源防雷器上的選擇起到一定的參考。 1、 電源防雷器 介紹 電源防雷器,即電源SPD,在電源系統的防雷中起著重要的作用。它并聯在線路中為雷電流提供一個泄放通道,并將加在后端設備的過 電壓 限制在一定的范圍內,從而對后面的設備進行保護。
本文通過對進口防雷器的核心技術和參數進行詳細介紹,并對選擇電源防雷器的幾個重要的參數進行對比分析,對技術人員以后在電源防雷器上的選擇起到一定的參考。
1、
電源防雷器介紹
電源防雷器,即電源SPD,在電源系統的防雷中起著重要的作用。它并聯在線路中為雷電流提供一個泄放通道,并將加在后端設備的過
電壓限制在一定的范圍內,從而對后面的設備進行保護。
組成電源SPD的元器件主要有陶瓷氣體放電管(GDT)、氧化鋅壓敏電阻(MOV)、瞬態抑制二極管(TVS)。根據三種主要元件器的組合方式不同,可以分為單一元件的電源SPD和組合式的電源SPD。國內的電源SPD都是采用單一的氣體放電管或壓敏電阻組成SPD,成本較低,但存在許多缺陷,如單一的氣體放電管具有殘壓高、響應時間長、工頻續流等缺點,而單一的壓敏電阻存在漏電的問題,這將大大減小SPD的使用壽命,并且可能產生自然自爆的現象。因此,為了克服上述元器件的缺點,充分發揮各自的優點,對元器件進行各種組合,并在技術工藝上進行革新,使得電源SPD的性能和技術參數指標得到優化,更加安全和有效地保護電氣設備。
2、 四種進口電源SPD核心技術介紹
四種進口電源SPD擁有的核心技術分別是:Palmas的復合型技術、PHOENIX的AEC能量配合技術、德國DEHN
的RADAX Flow技術、OBO的多層石墨火花間隙技術。
2.1復合型技術
該技術是將n個壓敏電阻(MOV)、n個陶瓷放電管(GTD)、n個瞬態二極管(TVS)、浪涌電阻(SR)、溫度控制保險管等各種瞬態過電壓保護元器件通過串聯和并聯的矩陣方式排列在PCB電路板,由主放電電路(為雷電流泄放提供通道,并將殘壓逐步限制在很低的水平)和控制電路(用于監測各種防雷元件器的工作和老化狀態)組成,充分利用不同元器件的優點,發揮其作用。它主要解決了殘壓、響應時間、漏電流、通流量、工頻續流、使用壽命的問題。
2.2 AEC能量控制技術
主動能量控制的核心是一個屬于B+C類的SPD,該SPD是在一個用特殊合金材料間隙的電極間加裝了一個主動能量控制器,監測后級SPD的殘壓,在后級能量承受極限之前,主動觸發放電間隙使之工作,并因開關型SPD工作之后維持放電電弧的電壓較低,從而使得點火電路和后級SPD不再因過電壓而處于工作狀態,使得其承受的能量極小。它解決了殘壓、通流量、使用壽命的問題。
2.3 RADAX Flow技術
續流抑制、遮斷專利技術,工作原理以徑向和軸向吹弧優化電弧冷卻為基礎,必須的冷卻氣體是在電弧的影響下由周圍的塑料材料產生的。它可實現被保護電氣裝置工作的高可靠性,與DEHNventil
M 輔助電路配合使用,可以有效降低防雷器的電壓保護水平。它解決了殘壓、能量配合、工頻續流的問題。
2.4多層石墨火花間隙技術
該技術的裝置由九層火花間隙組成,這九層火花間隙由十片高能石墨電極圓盤疊合在一起夠成,高耐熱的特氟綸隔環,
可靠地保證了火花間隙內部的安全距離,用螺栓固定的壓鑄鋅金屬連接板,將火花間隙組合在一起,箝制在精確的位置上,九層火花間隙中的八層間隙經過了大容量電容控制,因而保證了精確設定的保護電壓水平小于2KV。
總結:防雷器的選擇直接影響被保護設備的安全,所以一定要為設備選擇匹配的防雷產品。